民工哥死磕Redis教程(十):Cluster 集群分片技术

介绍了主从复制和哨兵机制保障了高可用,就读写分离而言虽然 slave 节点扩展了主从的读并发能力,但是写能力和存储能力是无法进行扩展,就只能是 master 节点能够承载的上限。

今天我将详细的为大家介绍 Redis Cluster集群分片技术相关知识,希望大家能够从中收获多多!如有帮助,请点在看、转发支持一波!!!

如果面对海量数据那么必然需要构建master(主节点分片)之间的集群,同时必然需要吸收高可用(主从复制和哨兵机制)能力,即每个master分片节点还需要有slave节点,这是分布式系统中典型的纵向扩展(集群的分片技术)的体现;所以在 Redis 3.0 版本中对应的设计就是Redis Cluster。

Redis 集群的设计目标

Redis-cluster 是一种服务器Sharding技术,Redis3.0以后版本正式提供支持。Redis Cluster在设计时考虑了什么?

Redis Cluster goals

高性能可线性扩展至最多1000节点。集群中没有代理,(集群节点间)使用异步复制,没有归并操作(merge operations on values)。

可接受的写入安全:系统尝试(采用best-effort方式)保留所有连接到master节点的client发起的写操作。通常会有一个小的时间窗,时间窗内的已确认写操作可能丢失(即,在发生failover之前的小段时间窗内的写操作可能在failover中丢失)。而在(网络)分区故障下,对少数派master的写入,发生写丢失的时间窗会很大。

可用性:Redis Cluster 在以下场景下集群总是可用:大部分master节点可用,并且对少部分不可用的master,每一个master至少有一个当前可用的slave。更进一步,通过使用 replicas migration 技术,当前没有slave的master会从当前拥有多个slave的master接受到一个新slave来确保可用性。

Clients and Servers roles in the Redis Cluster protocol

Redis Cluster的节点负责维护数据,和获取集群状态,这包括将keys映射到正确的节点。集群节点同样可以自动发现其他节点、检测不工作节点、以及在发现故障发生时晋升slave节点到master。

所有集群节点通过由TCP和二进制协议组成的称为 Redis Cluster Bus 的方式来实现集群的节点自动发现、故障节点探测、slave升级为master等任务。每个节点通过cluster bus连接所有其他节点。节点间使用gossip协议进行集群信息传播,以此来实现新节点发现,发送ping包以确认对端工作正常,以及发送cluster消息用来标记特定状态。cluster bus还被用来在集群中创博Pub/Sub消息,以及在接收到用户请求后编排手动failover。

Write safety

Redis Cluster在节点间采用了异步复制,以及 last failover wins 隐含合并功能(implicit merge function)(【译注】不存在合并功能,而是总是认为最近一次failover的节点是最新的)。这意味着最后被选举出的master所包含的数据最终会替代(同一前master下)所有其他备份(replicas/slaves)节点(包含的数据)。当发生分区问题时,总是会有一个时间窗内会发生写入丢失。然而,对连接到多数派master(majority of masters)的client,以及连接到少数派master(mimority of masters)的client,这个时间窗是不同的。

相比较连接到少数master(minority of masters)的client,对连接到多数master(majority of masters)的client发起的写入,Redis cluster会更努力地尝试将其保存。下面的场景将会导致在主分区的master上,已经确认的写入在故障期间发生丢失:

写入请求达到master,但是当master执行完并回复client时,写操作可能还没有通过异步复制传播到它的slave。如果master在写操作抵达slave之前挂了,并且master无法触达(unreachable)的时间足够长而导致了slave节点晋升,那么这个写操作就永远地丢失了。通常很难直接观察到,因为master尝试回复client(写入确认)和传播写操作到slave通常几乎是同时发生。然而,这却是真实世界中的故障方式。(【译注】不考虑返回后宕机的场景,因为宕机导致的写入丢失,在单机版redis上同样存在,这不是redis cluster引入的目的及要解决的问题)。更多关于 Redis 学习的文章,请参阅:NoSQL 数据库系列之 Redis ,本系列持续更新中。

另一种理论上可能发生写入丢失的模式是:

  • master因为分区原因不可用(unreachable)
  • 该master被某个slave替换(failover)
  • 一段时间后,该master重新可用
  • 在该old master变为slave之前,一个client通过过期的路由表对该节点进行写入。

上述第二种失败场景通常难以发生,因为:

  • 少数派master(minority master)无法与多数派master(majority master)通信达到一定的时间后,它将拒绝写入,并且当分区恢复后,该master在重新与多数派master建立连接后,还将保持拒绝写入状态一小段时间来感知集群配置变化。留给client可写入的时间窗很小。
  • 发生这种错误还有一个前提是,client一直都在使用过期的路由表(而实际上集群因为发生了failover,已有slave发生了晋升)。

写入少数派master(minority side of a partition)会有一个更长的时间窗会导致数据丢失。因为如果最终导致了failover,则写入少数派master的数据将会被多数派一侧(majority side)覆盖(在少数派master作为slave重新接入集群后)。

特别地,如果要发生failover,master必须至少在NODE_TIMEOUT时间内无法被多数masters(majority of maters)连接,因此如果分区在这一时间内被修复,则不会发生写入丢失。当分区持续时间超过NODE_TIMEOUT时,所有在这段时间内对少数派master(minority side)的写入将会丢失。然而少数派一侧(minority side)将会在NODE_TIMEOUT时间之后如果还没有连上多数派一侧,则它会立即开始拒绝写入,因此对少数派master而言,存在一个进入不可用状态的最大时间窗。在这一时间窗之外,不会再有写入被接受或丢失。

可用性(Availability)

Redis Cluster在少数派分区侧不可用。在多数派分区侧,假设由多数派masters存在并且不可达的master有一个slave,cluster将会在NODE_TIMEOUT外加重新选举所需的一小段时间(通常1~2秒)后恢复可用。

这意味着,Redis Cluster被设计为可以忍受一小部分节点的故障,但是如果需要在大网络分裂(network splits)事件中(【译注】比如发生多分区故障导致网络被分割成多块,且不存在多数派master分区)保持可用性,它不是一个合适的方案(【译注】比如,不要尝试在多机房间部署redis cluster,这不是redis cluster该做的事)。

假设一个cluster由N个master节点组成并且每个节点仅拥有一个slave,在多数侧只有一个节点出现分区问题时,cluster的多数侧(majority side)可以保持可用,而当有两个节点出现分区故障时,只有 1-(1/(N_2-1)) 的可能性保持集群可用。也就是说,如果有一个由5个master和5个slave组成的cluster,那么当两个节点出现分区故障时,它有 1/(5_2-1)=11.11%的可能性发生集群不可用。

Redis cluster提供了一种成为 Replicas Migration 的有用特性特性,它通过自动转移备份节点到孤master节点,在真实世界的常见场景中提升了cluster的可用性。在每次成功的failover之后,cluster会自动重新配置slave分布以尽可能保证在下一次failure中拥有更好的抵御力。

性能(Performance)

Redis Cluster不会将命令路由到其中的key所在的节点,而是向client发一个重定向命令 (- MOVED) 引导client到正确的节点。最终client会获得一个最新的cluster(hash slots分布)展示,以及哪个节点服务于命令中的keys,因此clients就可以获得正确的节点并用来继续执行命令。

因为master和slave之间使用异步复制,节点不需要等待其他节点对写入的确认(除非使用了WAIT命令)就可以回复client。同样,因为multi-key命令被限制在了临近的key(near keys)(【译注】即同一hash slot内的key,或者从实际使用场景来说,更多的是通过hash tag定义为具备相同hash字段的有相近业务含义的一组keys),所以除非触发resharding,数据永远不会在节点间移动。

普通的命令(normal operations)会像在单个redis实例那样被执行。这意味着一个拥有N个master节点的Redis Cluster,你可以认为它拥有N倍的单个Redis性能。同时,query通常都在一个round trip中执行,因为client通常会保留与所有节点的持久化连接(连接池),因此延迟也与客户端操作单台redis实例没有区别。

在对数据安全性、可用性方面提供了合理的弱保证的前提下,提供极高的性能和可扩展性,这是Redis Cluster的主要目标。更多关于 Redis 学习的文章,请参阅:NoSQL 数据库系列之 Redis ,本系列持续更新中。

避免合并(merge)操作

Redis Cluster设计上避免了在多个拥有相同key-value对的节点上的版本冲突(及合并/merge),因为在redis数据模型下这是不需要的。Redis的值同时都非常大;一个拥有数百万元素的list或sorted set是很常见的。同样,数据类型的语义也很复杂。传输和合并这类值将会产生明显的瓶颈,并可能需要对应用侧的逻辑做明显的修改,比如需要更多的内存来保存meta-data等。

这里(【译注】刻意避免了merge)并没有严格的技术限制。CRDTs或同步复制状态机可以塑造与redis类似的复杂的数据类型。然而,这类系统运行时的行为与Redis Cluster其实是不一样的。Redis Cluster被设计用来支持非集群redis版本无法支持的一些额外的场景。

主要模块介绍

Redis Cluster Specification同时还介绍了Redis Cluster中主要模块,这里面包含了很多基础和概念,我们需要先了解下。

哈希槽(Hash Slot)

Redis-cluster 没有使用一致性hash,而是引入了哈希槽的概念。Redis-cluster中有16384(即2的14次方)个哈希槽,每个key通过CRC16校验后对16383取模来决定放置哪个槽。Cluster中的每个节点负责一部分hash槽(hash slot)。

比如集群中存在三个节点,则可能存在的一种分配如下:

  • 节点A包含0到5500号哈希槽;
  • 节点B包含5501到11000号哈希槽;
  • 节点C包含11001 到 16384号哈希槽。

Keys hash tags

Hash tags提供了一种途径,用来将多个(相关的)key分配到相同的hash slot中。这时Redis Cluster中实现multi-key操作的基础。

hash tag规则如下,如果满足如下规则,{和}之间的字符将用来计算HASH_SLOT,以保证这样的key保存在同一个slot中。

  • key包含一个{字符
  • 并且 如果在这个{的右面有一个}字符
  • 并且 如果在{和}之间存在至少一个字符

例如:

  • {user1000}.following和{user1000}.followers这两个key会被hash到相同的hash slot中,因为只有user1000会被用来计算hash slot值。
  • foo{}{bar}这个key不会启用hash tag因为第一个{和}之间没有字符。
  • foozap这个key中的{bar部分会被用来计算hash slot
  • foo{bar}{zap}这个key中的bar会被用来计算计算hash slot,而zap不会

Cluster nodes属性

每个节点在cluster中有一个唯一的名字。这个名字由160bit随机十六进制数字表示,并在节点启动时第一次获得(通常通过/dev/urandom)。节点在配置文件中保留它的ID,并永远地使用这个ID,直到被管理员使用CLUSTER RESET HARD命令hard reset这个节点。

节点ID被用来在整个cluster中标识每个节点。一个节点可以修改自己的IP地址而不需要修改自己的ID。Cluster可以检测到IP /port的改动并通过运行在cluster bus上的gossip协议重新配置该节点。

节点ID不是唯一与节点绑定的信息,但是他是唯一的一个总是保持全局一致的字段。每个节点都拥有一系列相关的信息。一些信息时关于本节点在集群中配置细节,并最终在cluster内部保持一致的。而其他信息,比如节点最后被ping的时间,是节点的本地信息。

每个节点维护着集群内其他节点的以下信息:node id节点的IP和port节点标签master node id(如果这是一个slave节点),最后被挂起的ping的发送时间(如果没有挂起的ping则为0),最后一次收到pong的时间当前的节点configuration epoch ,链接状态,以及最后是该节点服务的hash slots

对节点字段更详细的描述,可以参考对命令 CLUSTER NODES的描述。

CLUSTER NODES命令可以被发送到集群内的任意节点,他会提供基于该节点视角(view)下的集群状态以及每个节点的信息。

下面是一个发送到一个拥有3个节点的小集群的master节点的CLUSTER NODES输出的例子。

$ redis-cli cluster nodes

d1861060fe6a534d42d8a19aeb36600e18785e04 127.0.0.1:6379 myself - 0 1318428930 1 connected 0-1364
3886e65cc906bfd9b1f7e7bde468726a052d1dae 127.0.0.1:6380 master - 1318428930 1318428931 2 connected 1365-2729
d289c575dcbc4bdd2931585fd4339089e461a27d 127.0.0.1:6381 master - 1318428931 1318428931 3 connected 2730-4095

在上面的例子中,按顺序列出了不同的字段:

node id, address:port, flags, last ping sent, last pong received, configuration epoch, link state, slots.

Cluster总线

每个Redis Cluster节点有一个额外的TCP端口用来接受其他节点的连接。这个端口与用来接收client命令的普通TCP端口有一个固定的offset。该端口等于普通命令端口加上10000.例如,一个Redis街道口在端口6379坚挺客户端连接,那么它的集群总线端口16379也会被打开。

节点到节点的通讯只使用集群总线,同时使用集群总线协议:有不同的类型和大小的帧组成的二进制协议。集群总线的二进制协议没有被公开文档话,因为他不希望被外部软件设备用来预计群姐点进行对话。

集群拓扑

Redis Cluster是一张全网拓扑,节点与其他每个节点之间都保持着TCP连接。在一个拥有N个节点的集群中,每个节点由N-1个TCP传出连接,和N-1个TCP传入连接。这些TCP连接总是保持活性(be kept alive)。当一个节点在集群总线上发送了ping请求并期待对方回复pong,(如果没有得到回复)在等待足够成时间以便将对方标记为不可达之前,它将先尝试重新连接对方以刷新与对方的连接。而在全网拓扑中的Redis Cluster节点,节点使用gossip协议和配置更新机制来避免在正常情况下节点之间交换过多的消息,因此集群内交换的消息数目(相对节点数目)不是指数级的。更多关于 Redis 学习的文章,请参阅:NoSQL 数据库系列之 Redis ,本系列持续更新中。

节点握手

节点总是接受集群总线端口的链接,并且总是会回复ping请求,即使ping来自一个不可信节点。然而,如果发送节点被认为不是当前集群的一部分,所有其他包将被抛弃。

节点认定其他节点是当前集群的一部分有两种方式:

1.如果一个节点出现在了一条MEET消息中。一条meet消息非常像一个PING消息,但是它会强制接收者接受一个节点作为集群的一部分。节点只有在接收到系统管理员的如下命令后,才会向其他节点发送MEET消息:

CLUSTER MEET ip port

2.如果一个被信任的节点gossip了某个节点,那么接收到gossip消息的节点也会那个节点标记为集群的一部分。也就是说,如果在集群中,A知道B,而B知道C,最终B会发送gossip消息到A,告诉A节点C是集群的一部分。这时,A会把C注册未网络的一部分,并尝试与C建立连接。

这意味着,一旦我们把某个节点加入了连接图(connected graph),它们最终会自动形成一张全连接图(fully connected graph)。这意味着只要系统管理员强制加入了一条信任关系(在某个节点上通过meet命令加入了一个新节点),集群可以自动发现其他节点。

请求重定向

Redis cluster采用去中心化的架构,集群的主节点各自负责一部分槽,客户端如何确定key到底会映射到哪个节点上呢?这就是我们要讲的请求重定向。

在cluster模式下,节点对请求的处理过程如下:

  • 检查当前key是否存在当前NODE?
    • 通过crc16(key)/16384计算出slot
    • 查询负责该slot负责的节点,得到节点指针
    • 该指针与自身节点比较
  • 若slot不是由自身负责,则返回MOVED重定向
  • 若slot由自身负责,且key在slot中,则返回该key对应结果
  • 若key不存在此slot中,检查该slot是否正在迁出(MIGRATING)?
  • 若key正在迁出,返回ASK错误重定向客户端到迁移的目的服务器上
  • 若Slot未迁出,检查Slot是否导入中?
  • 若Slot导入中且有ASKING标记,则直接操作
  • 否则返回MOVED重定向

这个过程中有两点需要具体理解下:MOVED重定向 和 ASK重定向。

Moved 重定向

民工哥死磕Redis教程(十):Cluster 集群分片技术

  • 槽命中:直接返回结果
  • 槽不命中:即当前键命令所请求的键不在当前请求的节点中,则当前节点会向客户端发送一个Moved 重定向,客户端根据Moved 重定向所包含的内容找到目标节点,再一次发送命令。
  • 至此就可以用来进行命令操作
  • 集群中各节点所负责的slots信息,及其migrate状态
  • 集群中各节点的master-slave状态
  • 集群中各节点的存活状态及不可达投票
  • Ping 节点每秒会向集群中其他节点发送 ping 消息,消息中带有自己已知的两个节点的地址、槽、状态信息、最后一次通信时间等。
  • Pong 节点收到 ping 消息后会回复 pong 消息,消息中同样带有自己已知的两个节点信息。
  • Fail 节点 ping 不通某节点后,会向集群所有节点广播该节点挂掉的消息。其他节点收到消息后标记已下线。
  • 当前节点也将 node 标记为 PFAIL 状态。
  • 每1秒从所有已知节点中随机选取5个,向其中上次收到pong最久远的一个发送ping
  • 每次Cron向收到pong超过timeout/2的节点发送ping
  • 收到ping或meet,立即回复pong
  • 主从信息
  • ip port信息
  • 状态信息
  • Gossip,发送者所了解的部分其他节点的信息
    • ping_sent, pong_received
  • ip, port信息
  • 状态信息,比如发送者认为该节点已经不可达,会在状态信息中标记其为PFAIL或FAIL
  • 从pong包中的gossip得到未知的其他节点
  • 循环上述过程,直到最终加入集群
  • 如果不同,且发送者epoch较大,更新本地记录
  • 如果不同,且发送者epoch小,发送Update信息通知发送者
  • PFAIL标记会随着gossip传播
  • 每次收到心跳包会检测其中对其他节点的PFAIL标记,当做对该节点FAIL的投票维护在本机
  • 对某个节点的PFAIL标记达到大多数时,将其变为FAIL标记并广播FAIL消息
  • Failover Request信息:slave尝试发起FailOver时广播其要求投票的信息
  • 新Master信息:Failover成功的节点向整个集群广播自己的信息
  • 将自己记录的集群currentEpoch加1,并广播Failover Request信息
  • 其他节点收到该信息,只有master响应,判断请求者的合法性,并发送FAILOVER_AUTH_ACK,对每一个epoch只发送一次ack
  • 尝试failover的slave收集FAILOVER_AUTH_ACK
  • 超过半数后变成新Master
  • 广播Pong通知其他集群节点
  • 对应用透明
  • 存在脑裂
  • Sentinel 模式存在短时间的服务不可用
  • 历史悠久,方案成熟
  • LVS 和 Twemproxy 会有节点性能瓶颈
  • Redis 扩容非常麻烦
  • Twitter 内部已放弃使用该方案,新使用的架构未开源
  • 性能比 Twemproxy 好
  • 有图形化界面,扩容容易,运维方便
  • 组件过多,需要很多机器资源
  • 修改了 Redis 代码,导致和官方无法同步,新特性跟进缓慢
  • 开发团队准备主推基于 Redis 改造的 reborndb