如何在Python中对时间序列数据进行重采样

如何在Python中对时间序列数据进行重采样

时间序列数据是在固定时间间隔内收集的观测序列。这些数据可以来自于任何领域,如金融、经济、健康和环境科学。我们收集的时间序列数据有时可能具有不同的频率或分辨率,这可能不适合我们的分析和数据建模过程。在这种情况下,我们可以通过上采样或下采样来重新采样时间序列数据,从而改变时间序列的频率或分辨率。本文将介绍不同的方法来上采样或下采样时间序列数据。

Upsampling

Upsampling means increasing the frequency of the time series data. This is usually done when we need a higher resolution or more frequent observations. Python provides several methods for upsampling time series data, including linear interpolation, nearest neighbor interpolation, and polynomial interpolation.

Syntax

DataFrame.resample(rule, *args, **kwargs) DataFrame.asfreq(freq, method=None) DataFrame.interpolate(method='linear', axis=0, limit=None, inplace=False, limit_direction='forward', limit_area=None) 登录后复制