进程之间的同步与互斥
进程同步和进程互斥
我们把一个时间段内只允许一个进程使用的资源称为临界资源。许多物理设备(比如摄像头、打印机)都属于临界资源。此外还有许多变量、数据、内存缓冲区等都属于临界资源。 进程同步 进程同步是进程间共同完成一项任务时直接发生相互作用的关系。为进程之间的直接制约关系。在多道环境下,这种进程间在执行次序上的协调是必不可少的。 进程互斥 对临界资源的访问,必须互斥地进行。互斥,亦称间接制约关系。进程互斥指当一个进程访问某临界资源时,另一个想要访问该临界资源的进程必须等待。当前访问临界资源的进程访问结束,释放该资源之后,另一个进程才能去访问临界资源。
进程互斥的四个部分
do{
entry section; //进入区 检查是否可以进入临界区,若能进入,需要“上锁”
critical section; //临界区 访问临界资源的代码
exit section; //退出区 “解锁”
remainder section //剩余区 其余代码部分
}while(true)
进程互斥需要的原则 为了实现对临界资源的互斥访问,同时保证系统整体性能,需要遵循以下原则: 1.空闲让进。临界区空闲时,可以允许一个请求进入临界区的进程立即进入临界区; 2.忙则等待。当已有进程进入临界区时,其他试图进入临界区的进程必须等待;
进程互斥的软件实现方法
进程互斥的硬件实现方法
中断屏蔽方法 利用“开中断关中断指令”实现 即某进程开始访问临界区到结束访问临界区为止都不允许被中断,也就不能发生进程切换,避免了两个进程同时访问临界区的情况 优点:简单、高效 缺点:不适用于多处理机;只适用于操作系统内核进程,不适用于用户进程(因为开/关中断指令只能运行在内核态,这组指令如果能让用户随意使用会很危险)
TestAndSet指令 简称TS指令,也有地方称为TestAndSetLock指令,或TSL指令。 TSL指令是用硬件实现的,执行的过程不允许被中断,只能一气呵成。 相比软件实现方法,TSL指令把“上锁”和“检查”操作用硬件的方式变成了一气响成的原于操作。 优点:实现简单,无需像软件实现方法那样严格检查是否会有逻辑漏洞;适用于多处理机环境 缺点:不满足“让权等待”原则,暂时无法进入临界区的进程会占用CPU并循环执行TSL指令,从而导致“忙等”。
Swap指令 有的地方也叫Exchange指令,或简称XCHG指令。Swap指令是用硬件实现的,执行的过程不允许被中断,只能一气呵成。 逻辑上来看Swap和TSL并无太大区别,都是先记录下此时临界区是否已经被上锁(记录在old变量上),再将上锁标记lock设置为true,最后检查old,如果old为false则说明之前没有别的进程对临界区上锁,则可跳出循环,进入临界区。 优点:实现简单,无需像软件实现方法那样严格检查是否会有逻辑漏洞;适用于多处理机环境 缺点:不满足“让权等待”原则,暂时无法进入临界区的进程会占用CPU并循环执行TSL指令,从而导致“忙等”。
信号量机制
信号量就是一个变量,可以用一个信号量来表示系统中某种资源的数量。 wait(S)=P,原语和signal(S)=V,这是是我们自己写的函数,通常称这两个原语为P,V操作,括号里的信号量S就是函数调用时传入的参数。 使用PV操作需要把P(S),V(S)的位置放正确,并且PV操作必须成对出现。