开启天文之路的 4 个 Python 工具
使用 NumPy、SciPy、Scikit-Image 和 Astropy 探索宇宙
天文学与 Python
对科学界而言,尤其是对天文学界来说,Python 是一种伟大的语言工具。各种软件包,如 NumPy、SciPy、Scikit-Image 和 Astropy,(仅举几例) ,都充分证明了 Python 对天文学的适用性,而且有很多用例。(NumPy、Astropy 和 SciPy 是 NumFOCUS 提供资金支持的项目;Scikit-Image 是个隶属项目)。我在十几年前脱离天文研究领域,成为了软件开发者之后,对这些工具包的演进一直很感兴趣。我的很多前天文界同事在他们的研究中,使用着前面提到的大部分甚至是全部工具包。以我为例,我也曾为位于智利的超大口径望远镜(VLT)上的仪器编写过专业天文软件工具包。
最近令我吃惊的是,Python 工具包竟然演进到如此好用,任何人都可以轻松编写 数据还原 data reduction 脚本,产生出高质量的数据产品。天文数据易于获取,而且大部分是可以公开使用的,你要做的只是去寻找相关数据。
比如,负责 VLT 运行的 ESO,直接在他们的网站上提供数据下载服务,只要访问 www.eso.org/UserPortal 并在首页创建用户就可以享有数据下载服务。如果你需要 SPHERE 数据,可以下载附近任何一个包含 系外行星 exoplanet 或者 原恒星盘 proto-stellar discs 的恒星的全部数据集。对任何 Python 高手而言,通过还原数据发现深藏于噪声中的行星或者原恒星盘,实在是件令人兴奋的事。
我鼓励你下载 ESO 或其它天文影像数据,开启你的探索历程。这里提供几条建议:
首先要有一个高质量的数据集。看一些有关包含系外行星或者原恒星盘的较近恒星的论文,然后在 http://archive.eso.org/wdb/wdb/eso/sphere/query 之类的网站检索数据。需要注意的是,前述网站上的数据有的标注为红色,有的标注为绿色,标注为红色的数据是尚未公开的,在相应的“发布日期”处会注明数据将来公开的时间。
了解一些用于获取你所用数据的仪器的信息。尽量对数据的获取有一个基本的理解,对标准的数据还原之后应该是什么样子做到心中有数。所有的望远镜和仪器都有这方面的文档供公开获取。
必须考虑天文数据的标准问题,并予以校正: