MySQL慢查询之ptquerydigest分析慢查询日志

一、简介 pt-query-digest是用于分析mysql慢查询的一个工具,它可以分析binlog、General log、slowlog,也可以通过SHOWPROCESSLIST或者通过tcpdump抓取的MySQL协议数据来进行分析。可以把分析结果输出

                        <p>一、简介</p>

pt-query-digest是用于分析mysql慢查询的一个工具,它可以分析binlog、General log、slowlog,也可以通过SHOWPROCESSLIST或者通过tcpdump抓取的MySQL协议数据来进行分析。可以把分析结果输出到文件中,分析过程是先对查询语句的条件进行参数化,然后对参数化以后的查询进行分组统计,统计出各查询的执行时间、次数、占比等,可以借助分析结果找出问题进行优化。

二、安装pt-query-digest

1.下载页面:https://www.percona.com/doc/percona-toolkit/2.2/installation.html

2.perl的模块

yum install -y perl-CPAN perl-Time-HiRes

3.安装步骤

方法一:rpm安装

cd /usr/local/src wget percona.com/get/percona-toolkit.rpm yum install -y percona-toolkit.rpm

工具安装目录在:/usr/bin

方法二:源码安装

cd /usr/local/src wget percona.com/get/percona-toolkit.tar.gz tar zxf percona-toolkit.tar.gz cd percona-toolkit-2.2.19 perl Makefile.PL PREFIX=/usr/local/percona-toolkit make && make install

工具安装目录在:/usr/local/percona-toolkit/bin

4.各工具用法简介(详细内容:https://www.percona.com/doc/percona-toolkit/2.2/index.html)

(1)慢查询日志分析统计

pt-query-digest /usr/local/mysql/data/slow.log

(2)服务器摘要

pt-summary

(3)服务器磁盘监测

pt-diskstats

(4)mysql服务状态摘要

pt-mysql-summary -- --user=root --password=root

三、pt-query-digest语法及重要选项

pt-query-digest [OPTIONS] [FILES] [DSN] --create-review-table  当使用--review参数把分析结果输出到表中时,如果没有表就自动创建。 --create-history-table  当使用--history参数把分析结果输出到表中时,如果没有表就自动创建。 --filter  对输入的慢查询按指定的字符串进行匹配过滤后再进行分析 --limit    限制输出结果百分比或数量,默认值是20,即将最慢的20条语句输出,如果是50%则按总响应时间占比从大到小排序,输出到总和达到50%位置截止。 --host  mysql服务器地址 --user  mysql用户名 --password  mysql用户密码 --history 将分析结果保存到表中,分析结果比较详细,下次再使用--history时,如果存在相同的语句,且查询所在的时间区间和历史表中的不同,则会记录到数据表中,可以通过查询同一CHECKSUM来比较某类型查询的历史变化。 --review 将分析结果保存到表中,这个分析只是对查询条件进行参数化,一个类型的查询一条记录,比较简单。当下次使用--review时,如果存在相同的语句分析,就不会记录到数据表中。 --output 分析结果输出类型,值可以是report(标准分析报告)、slowlog(Mysql slow log)、json、json-anon,一般使用report,以便于阅读。 --since 从什么时间开始分析,值为字符串,可以是指定的某个”yyyy-mm-dd [hh:mm:ss]”格式的时间点,也可以是简单的一个时间值:s(秒)、h(小时)、m(分钟)、d(天),如12h就表示从12小时前开始统计。 --until 截止时间,配合—since可以分析一段时间内的慢查询。

四、分析pt-query-digest输出结果

第一部分:总体统计结果

Overall:总共有多少条查询

Time range:查询执行的时间范围

unique:唯一查询数量,即对查询条件进行参数化以后,总共有多少个不同的查询

total:总计   min:最小   max:最大  avg:平均

95%:把所有值从小到大排列,位置位于95%的那个数,这个数一般最具有参考价值

median:中位数,把所有值从小到大排列,位置位于中间那个数

  1. 该工具执行日志分析的用户时间,系统时间,物理内存占用大小,虚拟内存占用大小
  2. 340ms user time, 140ms system time, 23.99M rss, 203.11M vsz
  3. 工具执行时间
  4. Current date: Fri Nov 25 02:37:18 2016
  5. 运行分析工具的主机名
  6. Hostname: localhost.localdomain
  7. 被分析的文件名
  8. Files: slow.log
  9. 语句总数量,唯一的语句数量,QPS,并发数
  10. Overall: 2 total, 2 unique, 0.01 QPS, 0.01x concurrency ____
  11. 日志记录的时间范围
  12. Time range: 2016-11-22 06:06:18 to 06:11:40
  13. 属性 总计 最小 最大 平均 95% 标准 中等
  14. Attribute total min max avg 95% stddev median
  15. ============ ======= ======= ======= ======= ======= ======= =======
  16. 语句执行时间
  17. Exec time 3s 640ms 2s 1s 2s 999ms 1s
  18. 锁占用时间
  19. Lock time 1ms 0 1ms 723us 1ms 1ms 723us
  20. 发送到客户端的行数
  21. Rows sent 5 1 4 2.50 4 2.12 2.50
  22. select语句扫描行数
  23. Rows examine 186.17k 0 186.17k 93.09k 186.17k 131.64k 93.09k
  24. 查询的字符数
  25. Query size 455 15 440 227.50 440 300.52 227.50

第二部分:查询分组统计结果

Rank:所有语句的排名,默认按查询时间降序排列,通过--order-by指定

Query ID:语句的ID,(去掉多余空格和文本字符,计算hash值)

Response:总的响应时间

time:该查询在本次分析中总的时间占比

calls:执行次数,即本次分析总共有多少条这种类型的查询语句

R/Call:平均每次执行的响应时间

V/M:响应时间Variance-to-mean的比率

Item:查询对象

  1. Profile
  2. Rank Query ID Response time Calls R/Call V/M Item
  3. ==== ================== ============= ===== ====== ===== ===============
  4. 1 0xF9A57DD5A41825CA 2.0529 76.2% 1 2.0529 0.00 SELECT
  5. 2 0x4194D8F83F4F9365 0.6401 23.8% 1 0.6401 0.00 SELECT wx_member_base

第三部分:每一种查询的详细统计结果

由下面查询的详细统计结果,最上面的表格列出了执行次数、最大、最小、平均、95%等各项目的统计。

ID:查询的ID号,和上图的Query ID对应

Databases:数据库名

Users:各个用户执行的次数(占比)

Query_time distribution :查询时间分布, 长短体现区间占比,本例中1s-10s之间查询数量是10s以上的两倍。

Tables:查询中涉及到的表

Explain:SQL语句

  1. Query 1: 0 QPS, 0x concurrency, ID 0xF9A57DD5A41825CA at byte 802 __
  2. This item is included in the report because it matches --limit.
  3. Scores: V/M = 0.00
  4. Time range: all events occurred at 2016-11-22 06:11:40
  5. Attribute pct total min max avg 95% stddev median
  6. ============ === ======= ======= ======= ======= ======= ======= =======
  7. Count 50 1
  8. Exec time 76 2s 2s 2s 2s 2s 0 2s
  9. Lock time 0 0 0 0 0 0 0 0
  10. Rows sent 20 1 1 1 1 1 0 1
  11. Rows examine 0 0 0 0 0 0 0 0
  12. Query size 3 15 15 15 15 15 0 15
  13. String:
  14. Databases test
  15. Hosts 192.168.8.1
  16. Users mysql
  17. Query_time distribution
  18. 1us
  19. 10us
  20. 100us
  21. 1ms
  22. 10ms
  23. 100ms
  24. 1s ################################################################
  25. 10s+
  26. EXPLAIN /!50100 PARTITIONS/ select sleep(2)\G

五、用法示例

1.直接分析慢查询文件:

pt-query-digest slow.log > slow_report.log

2.分析最近12小时内的查询:

pt-query-digest --since=12h slow.log > slow_report2.log

3.分析指定时间范围内的查询:

pt-query-digest slow.log --since '2017-01-07 09:30:00' --until '2017-01-07 10:00:00'> > slow_report3.log

4.分析指含有select语句的慢查询

pt-query-digest --filter '$event->{fingerprint} =~ m/^select/i' slow.log> slow_report4.log

5.针对某个用户的慢查询

pt-query-digest --filter '($event->{user} || "") =~ m/^root/i' slow.log> slow_report5.log

6.查询所有所有的全表扫描或full join的慢查询

pt-query-digest --filter '(($event->{Full_scan} || "") eq "yes") ||(($event->{Full_join} || "") eq "yes")' slow.log> slow_report6.log

7.把查询保存到query_review表

pt-query-digest --user=root –password=abc123 --review h=localhost,D=test,t=query_review--create-review-table slow.log

8.把查询保存到query_history表

pt-query-digest --user=root –password=abc123 --review h=localhost,D=test,t=query_history--create-review-table slow.log_0001 pt-query-digest --user=root –password=abc123 --review h=localhost,D=test,t=query_history--create-review-table slow.log_0002

9.通过tcpdump抓取mysql的tcp协议数据,然后再分析

tcpdump -s 65535 -x -nn -q -tttt -i any -c 1000 port 3306 > mysql.tcp.txt pt-query-digest --type tcpdump mysql.tcp.txt> slow_report9.log

10.分析binlog

mysqlbinlog mysql-bin.000093 > mysql-bin000093.sql pt-query-digest --type=binlog mysql-bin000093.sql > slow_report10.log

11.分析general log

pt-query-digest --type=genlog localhost.log > slow_report11.log

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对每日运维的支持。